
Mechanism of inhibition of DNA gyrase by cyclothialidine, a novel DNA gyrase inhibitor
Author(s) -
Naoki Nakada,
Hans Gmünder,
Takahiro Hirata,
Mikio Arisawa
Publication year - 1994
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.38.9.1966
Subject(s) - dna gyrase , novobiocin , dna supercoil , dna , replisome , biochemistry , ofloxacin , biology , microbiology and biotechnology , chemistry , circular bacterial chromosome , escherichia coli , dna polymerase , dna replication , antibiotics , gene , ciprofloxacin
We investigated how cyclothialidine (Ro 09-1437), a novel DNA gyrase inhibitor belonging to a new chemical class of compounds, acts to inhibit Escherichia coli DNA gyrase. Cyclothialidine up to 100 micrograms/ml showed no effect on DNA gyrase when linear DNA was used as a substrate. Under the same conditions, quinolones, which inhibit the resealing reaction of DNA gyrase, caused a decrease in the amount of linear DNA used. No effect of cyclothialidine was observed on the accumulation of the covalent complex of DNA and the A subunit of DNA gyrase induced by ofloxacin in the absence of ATP. The effect of cyclothialidine on the DNA supercoiling reaction was antagonized by ATP, reducing the inhibitory activity 11-fold as the ATP concentration was increased from 0.5 to 5 mM. Cyclothialidine competitively inhibited the ATPase activity of DNA gyrase (Ki = 6 nM). The binding of [14C]benzoyl-cyclothialidine to E. coli gyrase was inhibited by ATP and novobiocin, but not by ofloxacin. These results suggest that cyclothialidine acts by interfering with the ATPase activity of the B subunit of DNA gyrase. Cyclothialidine was active against a DNA gyrase resistant to novobiocin, suggesting that its precise site of action might be different from that of novobiocin.