z-logo
open-access-imgOpen Access
Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes
Author(s) -
Robert C. Goldman,
Dorothy Zakula,
Robert K. Flamm,
Jill Beyer,
John O. Capobianco
Publication year - 1994
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.38.7.1496
Subject(s) - clarithromycin , ribosome , dissociation constant , helicobacter pylori , metabolite , erythromycin , ribosomal rna , biology , antibacterial agent , biochemistry , microbiology and biotechnology , chemistry , antibiotics , rna , receptor , gene , genetics
Clarithromycin is a recently approved macrolide with improved pharmacokinetics, antibacterial activity, and efficacy in treating bacterial infections including those caused by Helicobacter pylori, an agent implicated in various forms of gastric disease. We successfully isolated ribosomes from H. pylori and present the results of a study of their interaction with macrolides. Kinetic data were obtained by using 14C-labeled macrolides to probe the ribosomal binding site. Clarithromycin, its parent compound erythromycin, and its 14-(R)-hydroxy metabolite all bound tightly to H. pylori ribosomes. Kd values were in the range of 2 x 10(-10) M, which is the tightest binding interaction observed to date for a macrolide-ribosome complex. This tight binding was due to very slow dissociation rate constants of 7.07 x 10(-4), 6.83 x 10(-4), and 16.6 x 10(-4) min-1 for clarithromycin, erythromycin, and 14-hydroxyclarithromycin, respectively, giving half-times of dissociation ranging from 7 to 16 h, the slowest yet measured for a macrolide-ribosome complex. These dissociation rate constants are 2 orders of magnitude slower than the dissociation rate constants of macrolides from other gram-negative ribosomes. [14C]clarithromycin was bound stoichiometrically to 50S ribosomal subunits following incubation with 70S ribosomes and subsequent separation of the 30S and 50S subunits by sucrose density gradient centrifugation. These data predict that the lower MIC of clarithromycin compared with that of erythromycin for H. pylori is likely due to a faster rate of intracellular accumulation, possibly because of increased hydrophobicity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here