z-logo
open-access-imgOpen Access
Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases
Author(s) -
Patrice Nordmann,
Thierry Naas
Publication year - 1994
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.38.1.104
Subject(s) - peptide sequence , open reading frame , biology , pseudomonas aeruginosa , beta lactamase , gene , nucleic acid sequence , amino acid , genetics , sequence analysis , microbiology and biotechnology , escherichia coli , dna , bacteria
We have determined the nucleotide sequence (EMBL accession number, Z 21957) of the cloned chromosomal PER-1 extended-spectrum beta-lactamase gene from a Pseudomonas aeruginosa RNL-1 clinical isolate, blaPER-1 corresponds to a 924-bp open reading frame which encodes a polypeptide of 308 amino acids. This open reading frame is preceded by a -10 and a -35 region consistent with a putative P. aeruginosa promoter. Primer extension analysis of the PER-1 mRNA start revealed that this promoter was active in P. aeruginosa but not in Escherichia coli, in which PER-1 expression was driven by vector promoter sequences. N-terminal sequencing identified the PER-1 26-amino-acid leader peptide and enabled us to calculate the molecular mass (30.8 kDa) of the PER-1 mature form. Analysis of the percent GC content of blaPER-1 and of its 5' upstream sequences, as well as the codon usage for blaPER-1, indicated that blaPER-1 may have been inserted into P. aeruginosa genomic DNA from a nonpseudomonad bacterium. The PER-1 gene showed very low homology with other beta-lactamase genes at the DNA level. By using computer methods, assessment of the extent of identity between PER-1 and 10 beta-lactamase amino acid sequences indicated that PER-1 is a class A beta-lactamase. PER-1 shares around 27% amino acid identity with the sequenced extended-spectrum beta-lactamases of the TEM-SHV series and MEN-1 from Enterobacteriaceae species. The use of parsimony methods showed that PER-1 is not more closely related to gram-negative than to gram-positive bacterial class A beta-lactamases. Surprisingly, among class A beta-lactamases, PER-1 was most closely related to the recently reported CFXA from Bacteroides vulgatus, with which it shared 40% amino acid identity. This work indicates that non-Enterobacteriaceae species such as P. aeruginosa may possess class A extended-spectrum beta-lactamase genes possibly resulting from intergeneric DNA transfer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here