z-logo
open-access-imgOpen Access
Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae: evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms
Author(s) -
Louis B. Rice,
Lenore L. Carias,
L Etter,
David M. Shlaes
Publication year - 1993
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.37.5.1061
Subject(s) - cefoperazone , sulbactam , microbiology and biotechnology , in vivo , klebsiella pneumoniae , beta lactamase inhibitors , cephalosporin , biology , antibiotics , in vitro , antibiotic resistance , biochemistry , escherichia coli , imipenem , gene
We investigated the in vitro activity and the in vivo efficacy of the beta-lactam-beta-lactamase inhibitor combination cefoperazone-sulbactam against an isogenic series of Klebsiella pneumoniae strains. Both cefoperazone and cefoperazone-sulbactam were active in vitro against a susceptible clinical strain, and the combination was highly effective in the treatment of rat intra-abdominal abscesses. Loss of expression of a 39-kDa outer membrane protein resulted in at least a fourfold increase in the MICs of cefoperazone and cefoperazone-sulbactam but did not appreciably affect the in vivo efficacy of either regimen. Introduction of plasmid RP4, which encodes the TEM-2 beta-lactamase, into the susceptible strain resulted in the loss of in vitro activity and in vivo efficacy for cefoperazone. The in vitro activity of cefoperazone-sulbactam against this strain was diminished, but the antibiotic combination remained highly active in vivo. Introduction of RP4 into the strain lacking the 39-kDa outer membrane protein resulted in a fourfold increase in the in vitro MIC of cefoperazone-sulbactam in comparison with the beta-lactamase-producing susceptible strain and resulted in a loss of in vivo efficacy against infections caused by this strain. These results suggest that the combination of different resistance mechanisms, neither of which alone results in substantially diminished cefoperazone-sulbactam efficacy in vivo, can cause in vivo resistance to the beta-lactam-beta-lactamase inhibitor combination in K. pneumoniae.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here