Virucidal effects of glucose oxidase and peroxidase or their protein conjugates on human immunodeficiency virus type 1
Author(s) -
Yuji Yamaguchi,
Marianne Semmel,
L. Stanislawski,
A. Donny Strosberg,
M Stanislawski
Publication year - 1993
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.37.1.26
Subject(s) - peroxidase , lactoperoxidase , enzyme , biology , virology , glucose oxidase , antibody , chemistry , biochemistry , microbiology and biotechnology , immunology
Glucose oxidase and peroxidase (lactoperoxidase or myeloperoxidase) are virucidal to human immunodeficiency virus type 1 (HIV-1) in the presence of sodium iodide, as assessed by the loss of viral replication in a syncytium-forming assay or by the inhibition of cytopathic effects on infected cells. In the presence of low concentrations of sodium iodide, five HIV-1 isolates were equally susceptible to this virucidal system at enzyme concentrations of a few milliunits. The loss of viral replication was linearly related to the time of incubation in the enzyme solutions, with an inactivation rate of 1 log unit every 30 min. These enzymes and this halide were also cytotoxic to chronically infected, but not to uninfected, cultured CEM cells. Protein conjugates were prepared by using the enzymes and murine antibody 105.34, which recognized the V3 loop of HIV-1 LAI isolate surface glycoprotein, or recombinant human CD4. The protein conjugates inactivated free virus at rates similar to those of the free enzymes and were more effective than antibody or recombinant CD4 alone. These in vitro findings demonstrate that the peroxidase-H2O2-halide system provides potent virucidal activity against HIV-1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom