z-logo
open-access-imgOpen Access
In vitro antibacterial activity of Q-35, a new fluoroquinolone
Author(s) -
Tatsuya Itô,
Masako Otsuki,
Takeshi Nishino
Publication year - 1992
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.36.8.1708
Subject(s) - sparfloxacin , lomefloxacin , microbiology and biotechnology , ofloxacin , ciprofloxacin , staphylococcus aureus , antibacterial agent , enterobacter aerogenes , streptococcus pneumoniae , staphylococcus epidermidis , streptococcus pyogenes , dna gyrase , chemistry , biology , escherichia coli , antibiotics , bacteria , biochemistry , genetics , gene
The in vitro activity of Q-35, an 8-methoxy fluoroquinolone, was compared with those of ofloxacin, ciprofloxacin, tosufloxacin, lomefloxacin, and sparfloxacin. The MICs of Q-35 for 90% of strains tested (MIC90s) of Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes were 0.2, 6.25, 0.2, 0.39, and 0.39 micrograms/ml, respectively. The activity of Q-35 was 4- to 16-fold greater than those of ofloxacin, ciprofloxacin and lomefloxacin but equal to those of tosufloxacin and sparfloxacin against these organisms. For 82 ciprofloxacin-resistant staphylococci (MIC90 = 100 micrograms/ml), Q-35 was the most active of the new quinolones tested (MIC90 = 6.25 micrograms/ml). The MIC90s of Q-35 against Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa were 0.2, 0.78, and 12.5 micrograms/ml, respectively, and Q-35 was 2- to 16-fold less active than the other quinolones tested. Q-35 showed potent bactericidal activity and inhibited the supercoiling activity of DNA gyrase of S. aureus, E. coli, and P. aeruginosa.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here