z-logo
open-access-imgOpen Access
Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution
Author(s) -
Emiko Suzuki,
Keiichi Hiramatsu,
Takeshi Yokota
Publication year - 1992
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.36.2.429
Subject(s) - coagulase , staphylococcus haemolyticus , microbiology and biotechnology , staphylococcus saprophyticus , sccmec , penicillin binding proteins , penicillin , biology , staphylococcus , staphylococcus epidermidis , staphylococcus aureus , meticillin , micrococcaceae , antibacterial agent , methicillin resistant staphylococcus aureus , antibiotics , genetics , bacteria
A total number of 125 methicillin-resistant (MIC, greater than or equal to 16) coagulase-negative Staphylococcus strains isolated in Japan were surveyed for the distribution of the mecA gene, the structural gene for penicillin-binding protein 2', which is the causative genetic element for the intrinsic resistance of methicillin-resistant Staphylococcus aureus. Screening with colony hybridization by using a cloned mecA gene probe revealed that 121 strains (96.8%) belonging to the nine coagulase-negative Staphylococcus species (S. epidermidis, S. haemolyticus, S. saprophyticus, S. sciuri, S. simulans, S. hominis, S. capitis, S. warneri, and S. caprae) carried mecA in their genome, indicating wide distribution of the gene among coagulase-negative Staphylococcus species. Most (93.4%) of the mecA-carrying strains were producers of penicillinase. Four strains, including two S. haemolyticus and two S. saprophyticus strains, did not carry mecA in spite of their resistance to methicillin. One of them was of low-level resistance (MIC, 16), but three of them had moderate- to high-level resistance to methicillin (MIC, 64). Analysis of gel electrophoretic banding patterns of penicillin-binding proteins of these strains showed absence of penicillin-binding protein 2' but some alterations in signal intensities of the other penicillin-binding proteins. The result indicated that about 3% of methicillin-resistant coagulase-negative staphylococci in these hospitals had a resistance mechanism different from that associated with the production of penicillin-binding protein 2', as has been reported in the case of a borderline methicillin-resistant strain of S. aureus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom