z-logo
open-access-imgOpen Access
Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution
Author(s) -
Peter Rådström,
Göte Swedberg,
Ola Sköld
Publication year - 1991
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.35.9.1840
Subject(s) - plasmid , biology , integron , genetics , gene , mobile genetic elements , transposable element , population , horizontal gene transfer , drug resistance , microbiology and biotechnology , antibiotic resistance , bacteria , genome , demography , sociology
In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here