
Mercuric reductase activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria
Author(s) -
Vincent A. Steingrube,
Richard J. Wallace,
Lorraine C. Steele,
Yanbo Pang
Publication year - 1991
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.35.5.819
Subject(s) - mycobacterium fortuitum , mycobacterium , mercury (programming language) , microbiology and biotechnology , mycobacterium chelonae , enzyme , reductase , biology , enzyme assay , bacteria , chemistry , biochemistry , genetics , computer science , programming language
Resistance to mercury was evaluated in 356 rapidly growing mycobacteria belonging to eight taxonomic groups. Resistance to inorganic Hg2+ ranged from 0% among the unnamed third biovariant complex of Mycobacterium fortuitum to 83% among M. chelonae-like organisms. With cell extracts and 203Hg(NO3)2 as the substrate, mercuric reductase (HgRe) activity was demonstrable in six of eight taxonomic groups. HgRe activity was inducible and required NADPH or NADH and a thiol donor for optimai activity. Species with HgRe activity were also resistant to organomercurial compounds, including phenylmercuric acetate. Attempts at intraspecies and intragenus transfer of HgRe activity by conjugation or transformation were unsuccessful. Mercury resistance is common in rapidly growing mycobacteria and appears to function via the same inducible enzyme systems already defined in other bacterial species. This system offers potential as a strain marker for epidemiologic investigations and for studying genetic systems in rapidly growing mycobacteria.