Evolution of plasmid-coded resistance to broad-spectrum cephalosporins
Author(s) -
Christine Kliebe,
Berthold Nies,
Joachim Meyer,
Regina Tolxdorff-Neutzling,
B. Wiedemann
Publication year - 1985
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.28.2.302
Subject(s) - cephalosporin , plasmid , mutant , biology , microbiology and biotechnology , beta lactamase , broad spectrum , point mutation , heteroduplex , klebsiella , gene , genetics , chemistry , escherichia coli , antibiotics , combinatorial chemistry
A clinical isolate of Klebsiella ozaenae with transferable resistance to broad-spectrum cephalosporins produces a beta-lactamase determined by plasmid pBP60. The beta-lactamase had the same isoelectric point as SHV-1 (7.6). From heteroduplex analysis, an extensive homology between the two bla genes could be deduced; therefore, the new beta-lactamase was designated SHV-2. Enzymatic studies revealed that SHV-2 was able to hydrolyze broad-spectrum cephalosporins due to an increased affinity of these compounds for the enzyme. The assumption that SHV-2 is a natural mutant of SHV-1 was strongly supported by the isolation of a laboratory mutant of SHV-1 that showed activities similar to those of SHV-2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom