z-logo
open-access-imgOpen Access
Imipenem-induced resistance to antipseudomonal beta-lactams in Pseudomonas aeruginosa
Author(s) -
Francisca Tausk,
Martin E. Evans,
L S Patterson,
Charles F. Federspiel,
Charles W. Stratton
Publication year - 1985
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.28.1.41
Subject(s) - imipenem , pseudomonas aeruginosa , microbiology and biotechnology , antibiotics , antibacterial agent , biology , beta lactamase , pseudomonadaceae , pseudomonas , antimicrobial , chemistry , bacteria , antibiotic resistance , escherichia coli , biochemistry , genetics , gene
Using clinical isolates of Pseudomonas aeruginosa, we studied the ability of imipenem to antagonize the activity of nine other antipseudomonal beta-lactam antimicrobial agents. Imipenem caused truncation of the zones of inhibition in a disk diffusion test for 91 to 100% of the strains, depending on the beta-lactam tested. Addition of subinhibitory concentrations of imipenem caused a fourfold or greater increase in MICs for 72 of 74 isolates and in 20 to 87% of the tests, again depending on the antibiotic tested. beta-Lactamase assays with both whole-cell suspensions and cell sonicates showed that exposure to subinhibitory concentrations of imipenem resulted in a beta-lactamase production supported the hypothesis that induction of beta-lactamase was responsible for antagonism. In hydrolysis studies with a beta-lactamase extract, most of the antagonized drugs were either not hydrolyzed or only poorly hydrolyzed. We conclude that imipenem induces significantly elevated levels of beta-lactamase in P. aeruginosa. This increase in beta-lactamase is associated with increased resistance of the organism to many other beta-lactam agents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom