Open Access
Comparison Study of the Kinetics of Ceftizoxime Penetration into Extravascular Spaces with Known Surface Area/Volume Ratio In Vitro and In Vivo in Rabbits
Author(s) -
Linda L. Van Etta,
Claudine E. Fasching,
Lance R. Peterson,
Dale N. Gerding
Publication year - 1983
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.23.1.49
Subject(s) - ceftizoxime , kinetics , in vivo , penetration (warfare) , chemistry , biophysics , in vitro , nuclear medicine , physics , medicine , mathematics , biology , biochemistry , microbiology and biotechnology , quantum mechanics , operations research , cefotaxime , antibiotics
The extravascular kinetics of ceftizoxime were studied both in an in vitro kinetic model and in an in vivo rabbit model. Visking tubing chambers were used in both models to provide extravascular spaces with large or small volumes and surface areas, but identical surface area/volume ratios. Four rabbits, each implanted with two large Visking chambers and four small chambers, received 50 mg of ceftizoxime per kg intramuscularly every 3 h for eight doses. In the in vitro model, 80 mg of ceftizoxime was infused over 30 min every 3 h for eight doses. Intravascular and extravascular spaces were sampled in both models after the eighth dose. Ceftizoxime had similar intravascular kinetics in both models, i.e., the peak levels, the peak-to-trough fluctuations, and the half-life were comparable. The area under the curve (AUC) for the extravascular spaces was also similar in the two models. Large and small chambers having identical surface area/volume ratios demonstrated identical kinetics. The extravascular Visking chamber spaces achieved equilibrium with the intravascular spaces in both models, i.e., the AUC for the extravascular spaces was the same (P > 0.2) as that for the serum (rabbit model) or the test chamber (in vitro model). This study illustrates (i) that our modified in vitro model is a potentially valid model for studying extravascular kinetics; (ii) that extravascular spaces with identical surface area/volume ratios show similar penetration kinetics with a freely diffusible drug, such as ceftizoxime, despite differences in size; and (iii) that the Visking chamber extravascular-space model permits the free diffusion of the antimicrobial agent and reaches equilibrium (equivalent AUC) with the intravascular space.