
Whole-Genome Approach to Understanding the Mechanism of Action of a Histatin 5-Derived Peptide
Author(s) -
Cody B Bullock,
David S. McNabb,
Inês Mendes Pinto
Publication year - 2020
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.01698-19
Subject(s) - antifungal , peptide , mechanism of action , biology , antimicrobial , computational biology , microbiology and biotechnology , pharmacology , biochemistry , in vitro
The incidence of opportunistic fungal infections that threaten immunocompromised patients, along with the limited arsenal of antifungal drugs, calls for renewed efforts to develop novel antifungal therapies. Antimicrobial peptides have garnered interest as potential therapeutics. Among naturally occurring peptides, histatin 5 is a well-characterized 24-amino-acid peptide with strong antifungal activity. Our lab has identified a smaller histatin derivative, KM29, with stronger activity against multiple Candida spp., prompting us to investigate its fungicidal mechanism. A genetic screen was developed to test the Saccharomyces cerevisiae genomewide deletion collection for mutants with increased or decreased peptide sensitivity. The goal was to identify genes that would reveal insights into the mechanism of action of KM29, to be assessed in Candida albicans Several biological processes yielded increased sensitivity, with endosomal transport and vacuolar function appearing at high frequencies. Among the pathways involved in increased resistance, mitochondrial function showed the highest normalized genome frequency; hence, we focused on characterizing this pathway. KM29 localizes to mitochondria, and the killing activity depends on a functional electron transport chain. In addition, KM29 triggered reactive oxygen species (ROS) production, which was responsible for some cell death but insufficient to account for the complete killing activity. In agreement with this finding, we found that KM29 induced mitochondrial fragmentation and a mild loss of mitochondrial membrane potential. Furthermore, respiratory mutants exhibited severely diminished KM29 uptake. We confirmed this behavior in a C. albicans respiratory mutant. Taking our findings together, this work delineates the mitochondrial functions associated with KM29 fungicidal activity and provides additional pathways for further characterization in Candida spp.