Open Access
Mutations Identified in the Hepatitis C Virus (HCV) Polymerase of Patients with Chronic HCV Treated with Ribavirin Cause Resistance and Affect Viral Replication Fidelity
Author(s) -
Niels Mejer,
Ulrik Fahnøe,
Andrea Galli,
Santseharay Ramírez,
Ola Weiland,
Thomas Benfield,
Jens Bukh
Publication year - 2020
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.01417-20
Subject(s) - ribavirin , virology , hepatitis c virus , virus , hepacivirus , viral replication , biology , hepatitis c , medicine
Ribavirin has been used for 25 years to treat patients with chronic hepatitis C virus (HCV) infection; however, its antiviral mechanism of action remains unclear. Here, we studied virus evolution in a subset of samples from a randomized 24-week trial of ribavirin monotherapy versus placebo in chronic HCV patients, as well as the viral resistance mechanisms of the observed ribavirin-associated mutations in cell culture. Thus, we performed next-generation sequencing of the full-length coding sequences of HCV recovered from patients at weeks 0, 12, 20, 32 and 40 and analyzed novel single nucleotide polymorphisms (SNPs), diversity, and mutation-linkage. At week 20, increased genetic diversity was observed in 5 ribavirin-treated compared to 4 placebo-treated HCV patients due to new synonymous SNPs, particularly G-to-A and C-to-U ribavirin-associated transitions. Moreover, emergence of 14 nonsynonymous SNPs in HCV nonstructural 5B (NS5B) occurred in treated patients, but not in placebo controls. Most substitutions located close to the NS5B polymerase nucleotide entry site. Linkage analysis showed that putative resistance mutations were found in the majority of genomes in ribavirin-treated patients. Identified NS5B mutations from genotype 3a patients were further introduced into the genotype 3a cell-culture-adapted DBN strain for studies in Huh7.5 cells. Specific NS5B substitutions, including DBN-D148N+I363V, DBN-A150V+I363V, and DBN-T227S+S183P, conferred resistance to ribavirin in long-term cell culture treatment, possibly by reducing the HCV polymerase error rate. In conclusion, prolonged exposure of HCV to ribavirin in chronic hepatitis C patients induces NS5B resistance mutations leading to increased polymerase fidelity, which could be one mechanism for ribavirin resistance.