Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir
Author(s) -
Belén Borrego,
Ana Isabel de Ávila,
Esteban Domingo,
Alejandro Brun
Publication year - 2019
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.00669-19
Subject(s) - favipiravir , rift valley fever , outbreak , virology , virus , biology , nucleoside analogue , ebola virus , nucleoside , medicine , disease , covid-19 , genetics , infectious disease (medical specialty) , pathology
Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Treatment with favipiravir was shown to reduce the infectivity of Rift Valley fever virus both in cell cultures and in experimental animal models, but the mechanism of this protective effect is not understood. In this work, we show that favipiravir at concentrations well below the toxicity threshold estimated for cells is able to extinguish RVFV from infected cell cultures. Nucleotide sequence analysis has documented RVFV mutagenesis associated with virus extinction, with a significant increase in G to A and C to U transition frequencies and a decrease of specific infectivity, hallmarks of lethal mutagenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom