
Assessment of Tedizolid In Vitro Activity and Resistance Mechanisms against a Collection of Enterococcus spp. Causing Invasive Infections, Including Isolates Requiring an Optimized Dosing Strategy for Daptomycin from U.S. and European Medical Centers, 2016 to 2018
Author(s) -
Cecília G Carvalhaes,
Hélio S. Sader,
Robert K. Flamm,
Jennifer M Streit,
Rodrigo E. Mendes
Publication year - 2020
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.00175-20
Subject(s) - daptomycin , enterococcus faecium , enterococcus faecalis , microbiology and biotechnology , enterococcus , aminoglycoside , biology , vancomycin , antibiotics , dosing , pharmacology , bacteria , staphylococcus aureus , genetics
High-level aminoglycoside resistance was noted in 30.0% of Enterococcus faecalis and 25.2% of Enterococcus faecium isolates. Only 3.3% and 2.1% of E. faecalis isolates had elevated daptomycin MIC (≥2 mg/liter) and vancomycin resistance, respectively. In contrast, 37.4% to 40.3% of E. faecium isolates exhibited these phenotypes. Tedizolid inhibited 98.9% to 100.0% of enterococci causing serious invasive infections, including resistant subsets. Oxazolidinone resistance was mainly driven by G2576T; however, optrA and poxtA genes were also detected, including poxtA in the United States and Turkey.