z-logo
open-access-imgOpen Access
Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS
Author(s) -
Alyssa N. Coyne,
Victoria Baskerville,
Benjamin L. Zaepfel,
Dennis W. Dickson,
Frank Rigo,
Frank Bennett,
C. Patrick Lusk,
Jeffrey D. Rothstein
Publication year - 2021
Publication title -
science translational medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.819
H-Index - 216
eISSN - 1946-6242
pISSN - 1946-6234
DOI - 10.1126/scitranslmed.abe1923
Subject(s) - nuclear pore , medicine , genetics , pathology , cancer research , neuroscience , biology , nucleus
Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here