Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers
Author(s) -
Mei Liang,
Wenjie Chen,
Amy M. LaFountain,
Yuanlong Liu,
Foen Peng,
Rui Xia,
H. D. Bradshaw,
YaoWu Yuan
Publication year - 2023
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.adf1323
Subject(s) - biology , locus (genetics) , gene duplication , genetics , evolutionary biology , subclade , gene , phylogenetics , clade
Taxon-specific small RNA loci are widespread in eukaryotic genomes, yet their role in lineage-specific adaptation, phenotypic diversification, and speciation is poorly understood. Here, we report that a speciation locus in monkeyflowers ( Mimulus ), YELLOW UPPER ( YUP ), contains an inverted repeat region that produces small interfering RNAs (siRNAs) in a phased pattern. Although the inverted repeat is derived from a partial duplication of a protein-coding gene that is not involved in flower pigmentation, one of the siRNAs targets and represses a master regulator of floral carotenoid pigmentation. YUP emerged with two protein-coding genes that control other aspects of flower coloration as a "superlocus" in a subclade of Mimulus and has contributed to subsequent phenotypic diversification and pollinator-mediated speciation in the descendant species.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom