z-logo
open-access-imgOpen Access
Computer-aided key step generation in alkaloid total synthesis
Author(s) -
Yingfu Lin,
Rui Zhang,
Di Wang,
Tim Cernak
Publication year - 2023
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.ade8459
Subject(s) - retrosynthetic analysis , computer science , key (lock) , graph , computer aided , software , combinatorial explosion , program synthesis , theoretical computer science , programming language , total synthesis , chemistry , mathematics , stereochemistry , operating system , combinatorics
Efficient chemical synthesis is critical to satisfying future demands for medicines, materials, and agrochemicals. Retrosynthetic analysis of modestly complex molecules has been automated over the course of decades, but the combinatorial explosion of route possibilities has challenged computer hardware and software until only recently. Here, we explore a computational strategy that merges computer-aided synthesis planning with molecular graph editing to minimize the number of synthetic steps required to produce alkaloids. Our study culminated in an enantioselective three-step synthesis of (-)-stemoamide by leveraging high-impact key steps, which could be identified in computer-generated retrosynthesis plans using graph edit distances.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom