Lane nucleation in complex active flows
Author(s) -
Karol A. Bacik,
Bogdan Bacik,
Tim Rogers
Publication year - 2023
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.add8091
Subject(s) - crowds , nucleation , statistical physics , symmetry (geometry) , flow (mathematics) , physics , classical mechanics , mechanics , theoretical physics , computer science , mathematics , geometry , thermodynamics , computer security
Laning is a paradigmatic example of spontaneous organization in active two-component flows that has been observed in diverse contexts, including pedestrian traffic, driven colloids, complex plasmas, and molecular transport. We introduce a kinetic theory that elucidates the physical origins of laning and quantifies the propensity for lane nucleation in a given physical system. Our theory is valid in the low-density regime, and it makes different predictions about situations in which lanes may form that are not parallel with the direction of flow. We report on experiments with human crowds that verify two notable consequences of this phenomenon: tilting lanes under broken chiral symmetry and lane nucleation along elliptic, parabolic, and hyperbolic curves in the presence of sources or sinks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom