z-logo
open-access-imgOpen Access
Robust deep learning–based protein sequence design using ProteinMPNN
Author(s) -
Justas Dauparas,
Ivan Anishchenko,
Nathaniel R. Bennett,
Hua Bai,
Robert J. Ragotte,
Lukas F. Milles,
Basile I. M. Wicky,
Alexis Courbet,
Robbert J. de Haas,
Neville P. Bethel,
Philip J. Y. Leung,
Timothy F. Huddy,
Samuel J. Pellock,
Doug Tischer,
F. Chan,
Brian Koepnick,
Hannah Nguyen,
Alex Kang,
Banumathi Sankaran,
Asim K. Bera,
Neil P. King,
David Baker
Publication year - 2022
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.add2187
Subject(s) - protein design , in silico , deep learning , sequence (biology) , protein sequencing , computational biology , peptide sequence , computer science , protein structure prediction , protein structure , artificial intelligence , chemistry , biophysics , biochemistry , biology , gene

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom