Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state
Author(s) -
Xiaolong Ke,
Han Xiao,
Yaqi Peng,
Jing Wang,
Qi Lv,
Xuelu Wang
Publication year - 2022
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abq8591
Subject(s) - nitrogen fixation , phosphoenolpyruvate carboxykinase , root nodule , nitrogen , nitrogenase , biochemistry , biology , phosphoenolpyruvate carboxylase , glycolysis , fixation (population genetics) , symbiosis , microbiology and biotechnology , chemistry , photosynthesis , metabolism , gene , genetics , organic chemistry , bacteria
Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( Glycine max ) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom