Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells
Author(s) -
Siraj Sidhik,
Yafei Wang,
Michael C. De Siena,
Reza Asadpour,
Andrew Torma,
Tanguy Terlier,
Kevin Ho,
Wenbin Li,
Anand B. Puthirath,
Xinting Shuai,
Ayush Agrawal,
Boubacar Traoré,
Matthew R. Jones,
Rajiv Giridharagopal,
Pulickel M. Ajayan,
Joseph Strzalka,
David S. Ginger,
Claudine Katan,
Muhammad A. Alam,
Jacky Even,
Mercouri G. Kanatzidis,
Aditya D. Mohite
Publication year - 2022
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abq7652
Subject(s) - fabrication , bilayer , perovskite (structure) , materials science , nanotechnology , engineering physics , optoelectronics , chemical engineering , chemistry , physics , engineering , membrane , medicine , biochemistry , alternative medicine , pathology
Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom