z-logo
open-access-imgOpen Access
Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays
Author(s) -
Guillaume Guinot,
Fabien L. Condamine
Publication year - 2023
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abn2080
Subject(s) - extinction event , paleogene , cretaceous , paleontology , extinction (optical mineralogy) , vertebrate , ecology , geology , biology , biological dispersal , population , biochemistry , demography , sociology , gene
The Cretaceous-Paleogene event was the last mass extinction event, yet its impact and long-term effects on species-level marine vertebrate diversity remain largely uncharacterized. We quantified elasmobranch (sharks, skates, and rays) speciation, extinction, and ecological change resulting from the end-Cretaceous event using >3200 fossil occurrences and 675 species spanning the Late Cretaceous-Paleocene interval at global scale. Elasmobranchs declined by >62% at the Cretaceous-Paleogene boundary and did not fully recover in the Paleocene. The end-Cretaceous event triggered a heterogeneous pattern of extinction, with rays and durophagous species reaching the highest levels of extinction (>72%) and sharks and nondurophagous species being less affected. Taxa with large geographic ranges and/or those restricted to high-latitude settings show higher survival. The Cretaceous-Paleogene event drastically altered the evolutionary history of marine ecosystems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom