z-logo
open-access-imgOpen Access
Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer
Author(s) -
Christopher W. Koo,
Frank J. Tucci,
Yuan He,
Amy C. Rosenzweig
Publication year - 2022
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abm3282
Subject(s) - methane monooxygenase , chemistry , anaerobic oxidation of methane , methane , biophysics , lipid bilayer , protein subunit , biochemistry , biology , membrane , organic chemistry , gene
Bacterial methane oxidation using the enzyme particulate methane monooxygenase (pMMO) contributes to the removal of environmental methane, a potent greenhouse gas. Crystal structures determined using inactive, detergent-solubilized pMMO lack several conserved regions neighboring the proposed active site. We show that reconstituting pMMO in nanodiscs with lipids extracted from the native organism restores methane oxidation activity. Multiple nanodisc-embedded pMMO structures determined by cryo–electron microscopy to 2.14- to 2.46-angstrom resolution reveal the structure of pMMO in a lipid environment. The resulting model includes stabilizing lipids, regions of the PmoA and PmoC subunits not observed in prior structures, and a previously undetected copper-binding site in the PmoC subunit with an adjacent hydrophobic cavity. These structures provide a revised framework for understanding and engineering pMMO function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom