z-logo
open-access-imgOpen Access
Conformational states dynamically populated by a kinase determine its function
Author(s) -
Tao Xie,
Tamjeed Saleh,
P. Rossi,
Charalampos G. Kalodimos
Publication year - 2020
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abc2754
Subject(s) - function (biology) , chemistry , microbiology and biotechnology , biology
A moving target Abl kinase is an important signaling protein that is dysregulated in leukemia and other cancers and is the target of inhibitors such as imatinib. Like other kinases, Abl kinase is dynamic, and regulating conformational dynamics is key to regulating activity. Xieet al. used nuclear magnetic resonance to show that the Abl kinase domain interconverts between one active and two inactive states. Imatinib stabilizes an inactive conformation, and several resistance mutations act by destabilizing this conformation. In a construct that includes the regulatory domain, depending on the relative arrangement of the kinase and regulatory domains, the kinase domain is stabilized in either the active state or one of the inhibited states. Understanding the conformational dynamics of kinases can be leveraged to design selective drugs.Science , this issue p.eabc2754

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom