z-logo
open-access-imgOpen Access
A cell-based GEF assay reveals new substrates for DENN domains and a role for DENND2B in primary ciliogenesis
Author(s) -
Rahul Kumar,
Vincent Francis,
Gopinath Kulasekaran,
Maleeha Khan,
Gary A. B. Armstrong,
Peter S. McPherson
Publication year - 2022
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.abk3088
Subject(s) - ciliogenesis , rab , cilium , gtpase , guanine nucleotide exchange factor , microbiology and biotechnology , biology , effector , biogenesis , rhoa , small gtpase , signal transduction , genetics , gene
Primary cilia are sensory antennae crucial for cell and organism development, and defects in their biogenesis cause ciliopathies. Ciliogenesis involves membrane trafficking mediated by small guanosine triphosphatases (GTPases) including Rabs, molecular switches activated by guanine nucleotide exchange factors (GEFs). The largest family of Rab GEFs is the DENN domain–bearing proteins. Here, we screen all 60 Rabs against two major DENN domain families using a cellular GEF assay, uncovering 19 novel DENN/Rab pairs. The screen reveals Rab10 as a substrate for DENND2B, a protein previously implicated in cancer and severe mental retardation. Through activation of Rab10, DENND2B represses the formation of primary cilia. Through a second pathway, DENND2B functions as a GEF for RhoA to control the length of primary cilia. This work thus identifies an unexpected diversity in DENN domain–mediated activation of Rabs, a previously unidentified non-Rab substrate for a DENN domain, and a new regulatory protein in primary ciliogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom