
Chromatin architectural proteins regulate flowering time by precluding gene looping
Author(s) -
Bo Zhao,
Yanpeng Xi,
Jung-Hyun Kim,
Sibum Sung
Publication year - 2021
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.abg3097
Subject(s) - chromatin , biology , arabidopsis , genetics , gene , repressor , histone , chia pet , gene family , psychological repression , microbiology and biotechnology , arabidopsis thaliana , regulation of gene expression , bivalent chromatin , gene expression , chromatin remodeling , mutant
Chromatin structure is critical for gene expression and many other cellular processes. In Arabidopsis thaliana , the floral repressor FLC adopts a self-loop chromatin structure via bridging of its flanking regions. This local gene loop is necessary for active FLC expression. However, the molecular mechanism underlying the formation of this class of gene loops is unknown. Here, we report the characterization of a group of linker histone-like proteins, named the GH1-HMGA family in Arabidopsis , which act as chromatin architecture modulators. We demonstrate that these family members redundantly promote the floral transition through the repression of FLC A genome-wide study revealed that this family preferentially binds to the 5' and 3' ends of gene bodies. The loss of this binding increases FLC expression by stabilizing the FLC 5' to 3' gene looping. Our study provides mechanistic insights into how a family of evolutionarily conserved proteins regulates the formation of local gene loops.