z-logo
open-access-imgOpen Access
Evaluation of dosimetric effect of leaf position in a radiation field of an 80‐leaf multileaf collimator fitted to the LINAC head as a tertiary collimator
Author(s) -
Kehwar Than S.,
Bhardwaj Anup K.,
Chakarvarti Shiv K.
Publication year - 2006
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v7i3.2310
Subject(s) - multileaf collimator , percentage depth dose curve , linear particle accelerator , collimator , dosimetry , optics , collimated light , field size , nuclear medicine , photon , flatness (cosmology) , beam (structure) , radiation , physics , ionization chamber , medicine , ion , laser , cosmology , quantum mechanics , ionization
This study evaluates changes in the dosimetric characteristics of a Varian Millennium 80‐leaf multileaf collimator (MLC) in a radiation field. In this study, dose rate, scatter factor, percentage depth dose, surface dose and dose in the buildup region, beam profile, flatness and symmetry, and penumbra width measurements were made for 6‐MV and 15‐MV photon beams. Analysis of widths between 50% dose levels of the beam profiles to reflect the field size at the level of profile measurement shows a significant difference between the fields defined by MLC and/or jaws and MLC (zero gap) and the fields defined by jaws only. The position of the MLC leaves in the radiation field also significantly affects scatter factors. A new relationship has, therefore, been established between the scatter factors and the position of the MLC, which will indeed be useful in the dose calculation for irregular fields. Penumbra widths increase with field size and were higher for fields defined by jaws and/or MLC than jaws and MLC (zero gap) by 1.5 mm to 4.2 mm and 3.8 mm to 5.0 mm, for 6‐MV, and 1.5 mm to 2.4 mm and 3.0 mm to 5.6 mm, for 15‐MV, at 20% to 80% and 10% to 90% levels, respectively. The surface dose and the dose in the buildup region were smaller for fields defined by jaws and MLC (zero gap) than the fields defined by jaws and/or MLC for both photon energies. No significant differences were found in percentage depth dose beyondd max, beam profiles above 80% dose level, and flatness and symmetry for both energies. The results of this study suggest that while one collects linear accelerator beam data with a MLC, the effects of the positions of the MLC leaves play an important role in dosimetric characteristics of 3D conformal radiation therapy as well as intensity‐modulated radiotherapy. PACS number: 87.53.Dq

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here