z-logo
open-access-imgOpen Access
Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter‐free stereotactic radiosurgery system
Author(s) -
Cheng Jason Y.,
Ning Holly,
Arora Barbara C.,
Zhuge Ying,
Miller Robert W.
Publication year - 2016
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v17i3.5956
Subject(s) - truebeam , monte carlo method , detector , physics , linear particle accelerator , ionization chamber , dosimetry , optics , radiosurgery , nuclear medicine , collimated light , computational physics , beam (structure) , mathematics , medicine , statistics , radiation therapy , ion , quantum mechanics , ionization , laser
The dose measurements of the small field sizes, such as conical collimators used in stereotactic radiosurgery (SRS), are a significant challenge due to many factors including source occlusion, detector size limitation, and lack of lateral electronic equilibrium. One useful tool in dealing with the small field effect is Monte Carlo (MC) simulation. In this study, we report a comparison of Monte Carlo simulations and measurements of output factors for the Varian SRS system with conical collimators for energies of 6 MV flattening filter‐free (6 MV) and 10 MV flattening filter‐free (10 MV) on the TrueBeam accelerator. Monte Carlo simulations of Varian's SRS system for 6 MV and 10 MV photon energies with cones sizes of 17.5 mm, 15.0 mm, 12.5 mm, 10.0 mm, 7.5 mm, 5.0 mm, and 4.0 mm were performed using EGSnrc (release V4 2.4.0) codes. Varian's version‐2 phase‐space files for 6 MV and 10 MV of TrueBeam accelerator were utilized in the Monte Carlo simulations. Two small diode detectors Edge (Sun Nuclear) and Small Field Detector (SFD) (IBA Dosimetry) were applied to measure the output factors. Significant errors may result if detector correction factors are not applied to small field dosimetric measurements. Although it lacked the machine‐specific k Q clin , Q msrf clin , f msrcorrection factors for diode detectors in this study, correction factors were applied utilizing published studies conducted under similar conditions. For cone diameters greater than or equal to 12.5 mm, the differences between output factors for the Edge detector, SFD detector, and MC simulations are within 3.0% for both energies. For cone diameters below 12.5 mm, output factors differences exhibit greater variations. PACS number(s): 87.55.k, 87.55.Qr

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here