Open Access
Assessment of tumor motion reproducibility with audio‐visual coaching through successive 4D CT sessions
Author(s) -
Goossens Samuel,
Senny Frédéric,
Lee John Aldo,
Janssens Guillaume,
Geets Xavier
Publication year - 2014
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v15i1.4332
Subject(s) - reproducibility , audio visual , coaching , motion (physics) , computer science , medical physics , nuclear medicine , computer vision , multimedia , medicine , psychology , mathematics , statistics , psychotherapist
This study aimed to compare combined audio‐visual coaching with audio coaching alone and assess their respective impact on the reproducibility of external breathing motion and, one step further, on the internal lung tumor motion itself, through successive sessions. Thirteen patients with NSCLC were enrolled in this study. The tumor motion was assessed by three to four successive 4D CT sessions, while the breathing signal was measured from magnetic sensors positioned on the epigastric region. For all sessions, the breathing was regularized with either audio coaching alone (AC, n = 5 ) or combined with a real‐time visual feedback (A/VC, n = 8 ) when tolerated by the patients. Peak‐to‐peak amplitude, period and signal shape of both breathing and tumor motions were first measured. Then, the correlation between the respiratory signal and internal tumor motion over time was evaluated, as well as the residual tumor motion for a gated strategy. Although breathing and tumor motions were comparable between AC and AV/C groups, A/VC approach achieved better reproducibility through sessions than AC alone (mean tumor motion of 7.2 mm ± 1 vs. 8.6 mm ± 1.8 mm , and mean breathing motion of 14.9 mm ± 1.2 mm vs. 13.3 mm ± 3.7 mm , respectively). High internal/external correlation reproducibility was achieved in the superior‐inferior tumor motion direction for all patients. For the anterior‐posterior tumor motion direction, better correlation reproducibility has been observed when visual feedback has been used. For a displacement‐based gating approach, A/VC might also be recommended, since it led to smaller residual tumor motion within clinically relevant duty cycles. This study suggests that combining real‐time visual feedback with audio coaching might improve the reproducibility of key characteristics of the breathing pattern, and might thus be considered in the implementation of lung tumor radiotherapy. PACS number: 87