Open Access
Simultaneous couch and gantry dynamic arc rotation (CG‐Darc) in the treatment of breast cancer with accelerated partial breast irradiation (APBI): a feasibility study
Author(s) -
Popescu Carmen C.,
Beckham Wayne A.,
Patenaude Veronica V.,
Olivotto Ivo A.,
Vlachaki Maria T.
Publication year - 2013
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v14i1.4035
Subject(s) - breast cancer , irradiation , rotation (mathematics) , nuclear medicine , medicine , medical physics , cancer , physics , computer science , artificial intelligence , nuclear physics
The purpose of this study was to compare the dosimetry of CG‐Darc with three‐dimensional conformal radiation therapy (3D CRT) and volumetric‐modulated arc therapy (RapidArc) in the treatment of breast cancer with APBI. CG‐Darc plans were generated using two tangential couch arcs combined with a simultaneous noncoplanar gantry arc. The dynamic couch arc was modeled by consecutive IMRT fields at 10° intervals. RapidArc plans used a single partial arc with an avoidance sector, preventing direct beam exit into the thorax. CG‐Darc and RapidArc plans were compared with 3D CRT in 20 patients previously treated with 3D CRT (group A), and in 15 additional patients who failed the dosimetric constraints of the Canadian trial and of NSABP B‐39/RTOG 0413 for APBI (group B). CG‐Darc resulted in superior target coverage compared to 3D CRT and RapidArc (V95%: 98.2% vs. 97.1% and 95.7%). For outer breast lesions, CG‐Darc and RapidArc significantly reduced the ipsilateral breast V50% by 8% in group A and 15% in group B ( p < 0.05 ) as compared with 3D CRT. For inner and centrally located lesions, CG‐Darc resulted in significant ipsilateral lung V10% reduction when compared to 3D CRT and RapidArc (10.7% vs. 12.6% and 20.7% for group A, and 15.1% vs. 25.2% and 27.3% for group B). Similar advantage was observed in the dosimetry of contralateral breast where the percent maximum dose for CG‐Darc, 3D CRT, and RapidArc were 3.9%, 6.3%, and 5.8% for group A and 4.3%, 9.2%, and 6.3% for group B, respectively ( p < 0.05 ). CG‐Darc achieved superior target coverage while decreasing normal tissue dose even in patients failing APBI dose constraints. Consequently, this technique has the potential of expanding the use of APBI to patients currently ineligible for such treatment. Modification of the RapidArc algorithm will be necessary to link couch and gantry rotation with variable dose rate and, therefore, enable the use of CG‐Darc in clinical practice. PACS number: 80