z-logo
open-access-imgOpen Access
Design and study of ultrasound‐based automatic patient movement monitoring device for quantifying the intrafraction motion during teletherapy treatment
Author(s) -
Senthilkumar S.,
Vinothraj R.
Publication year - 2012
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v13i6.3709
Subject(s) - computer science , ultrasonic sensor , common emitter , signal (programming language) , ultrasound , power (physics) , acoustics , medical physics , biomedical engineering , electrical engineering , medicine , engineering , physics , quantum mechanics , programming language
The aim of the present study is to fabricate indigenously ultrasonic‐based automatic patient's movement monitoring device (UPMMD) that immediately halts teletherapy treatment if a patient moves, claiming accurate field treatment. The device consists of circuit board, magnetic attachment device, LED indicator, speaker, and ultrasonic emitter and receiver, which are placed on either side of the treatment table. The ultrasonic emitter produces the ultrasound waves and the receiver accepts the signal from the patient. When the patient moves, the receiver activates the circuit, an audible warning sound will be produced in the treatment console room alerting the technologist to stop treatment. Simultaneously, the electrical circuit to the teletherapy machine will be interrupted and radiation will be halted. The device and alarm system can detect patient movements with a sensitivity of about 1 mm. Our results indicate that, in spite of its low‐cost, low‐power, high‐precision, nonintrusive, light weight, reusable and simplicity features, UPMMD is highly sensitive and offers accurate measurements. Furthermore, UPMMD is patient‐friendly and requires minimal user training. This study revealed that the device can prevent the patient's normal tissues from unnecessary radiation exposure, and also it is helpful to deliver the radiation to the correct tumor location. Using this alarming system the patient can be repositioned after interrupting the treatment machine manually. It also enables the technologists to do their work more efficiently. PACS number: 87.53.Dq

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here