z-logo
open-access-imgOpen Access
Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps
Author(s) -
Gersh Jacob A.,
Wiant David B.,
Best Ryan C.M.,
Bennett Marcus C.,
Munley Michael T.,
King June D.,
McKee Mahta M.,
Baydush Alan H.
Publication year - 2010
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v11i4.3331
Subject(s) - tomosynthesis , imaging phantom , contouring , iterative reconstruction , computer science , computer vision , artificial intelligence , physics , optics , mammography , computer graphics (images) , medicine , cancer , breast cancer
This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited‐angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis‐based system could provide high‐quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU‐D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally‐offset 60° L‐arm sweeps and a single C‐arm sweep which shared a pivot point with one the L‐arm sweeps. When compared to a similar configuration that lacked the C‐arm component, it is shown that the C‐arm improves the delineation of volumes along the transverse axis. The results described herein suggest that volumetric reconstruction using multiple, unconstrained orthogonal sweeps can provide an improvement compared with traditional cone beam CT using standard axial rotations. PACS number: 87.57.nf

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here