z-logo
open-access-imgOpen Access
Evaluation of the eclipse electron Monte Carlo dose calculation for small fields
Author(s) -
Xu Zhigang,
Walsh Sarah E.,
Telivala Tejas P.,
Meek Allen G.,
Yang Guozhen
Publication year - 2009
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1120/jacmp.v10i3.2834
Subject(s) - monte carlo method , eclipse , statistical physics , mathematics , physics , statistics , astrophysics
Varian Medical Systems (Palo Alto, CA) has implemented the Monte Carlo electron dose calculation algorithm (eMC) in the Eclipse treatment planning system. Previous algorithms for electron treatment planning were limited in their calculation ability for small field depth doses and monitor units. An old rule of thumb to approximate the limiting cutout size for an electron field was determined by the lateral scatter equilibrium and approximated by E (MeV)/2.5 in centimeters of water. In this study, we compared eMC calculations and measurements of depth doses, isodose distributions, and monitor units for several different energy and small field cutout size combinations at different SSDs. Measurements were made using EBT film (International Specialty Products, Wayne, NJ) and a PinPoint ion chamber (PTW‐New York Corp., Hicksville, NY). Our results indicate that the eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units (within 2.5%) for field sizes as small as 3.0 cm diameter for energies in the 6 to 20 MeV range at 100 cm SSD. Therefore, the previous energy dependent rule of thumb does not apply to the Eclipse electron Monte Carlo code. However, at extended SSDs (105–110 cm), the results show good agreement (within 4%) only for higher energies (12, 16, and 20 MeV) for a field size of 3 cm. PACS number: 87.53.Hv

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here