z-logo
Premium
The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz
Author(s) -
Joines William T.,
Zhang Yang,
Li Chenxing,
Jirtle Randy L.
Publication year - 1994
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.597312
Subject(s) - permittivity , kidney , pathology , mammary gland , relative permittivity , lymph , materials science , lung , spleen , chemistry , nuclear magnetic resonance , medicine , endocrinology , dielectric , cancer , breast cancer , physics , optoelectronics
The electrical conductivity and relative permittivity of malignant and normal human tissues were measured at frequencies from 50 to 900 MHz. The measurements were made between 23 and 25 °C using a network analyzer connected to a flat‐ended coaxial probe that was pressed against the freshly excised tissue samples. The malignant tissues were of the following normal tissue origin: bladder, colon, kidney, liver, lung, lymph nodes, mammary gland, spleen, and testes. The normal tissues included: colon, kidney, liver, lung, mammary gland, and muscle. Normal tissue samples of bladder, lymph, spleen, and testes were not available. In general, at all frequencies tested, both conductivity and relative permittivity were greater in malignant tissue than in normal tissue of the same type. For tissues of the same type, the differences in electrical properties from normal to malignant were the least for kidney (about 6% and 4% average differences over the frequency range in permittivity and conductivity, respectively), and these differences were the greatest for mammary gland (about 233% and 577% average differences in permittivity and conductivity, respectively). To illustrate a potential use of these data in hyperthermia applications, frequency‐selective heating of malignant tissue (modeled as a sphere) surrounded by host normal tissue is calculated from the measured electrical properties for certain tissues.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here