z-logo
Premium
Sci‐Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques ‐ 09: Impact of the distance of reflective markers from linac isocenter on the positional accuracy of an infrared tracking system
Author(s) -
Ali Elsayed,
Nyiri Balazs
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4961852
Subject(s) - isocenter , hexapod , linear particle accelerator , frame rate , computer science , sagittal plane , dosimetry , optics , computer vision , nuclear medicine , physics , artificial intelligence , medicine , imaging phantom , beam (structure) , radiology , robot
Purpose: The HexaPOD™ six degree of freedom couchtop is equipped with an optical tracking system, consisting of a stereoscopic camera and a reference frame (RF) carrying infrared reflective markers. The manufacturer recommends placing the RF within 50 cm from linac isocenter (ISO), which is a serious limitation since the RF does not fit around the shoulders of most brain patients. This study quantifies the impact of extended RF distances from ISO on positional accuracy. Methods: An in‐house tool with an estimated resolution of 0.3 mm and 0.1° was used. It is a large cube and a mathematical model of HexaPOD motion to determine the intersection of room lasers with the ruled cube edges. Combinations of translations (±1 and ±3 cm) and rotations (±2.5°) were executed on two HexaPOD couchtops for multiple RF distances from ISO (35 to 77 cm). For each combination, ten laser readings were fed into a least squares algorithm to determine the executed translations and rotations while minimizing operator reading errors. Results: The usable tracking volume is up to an RF distance of 82 cm from ISO. Positional accuracy of the HexaPOD/iGuide system is 0.6 mm and 0.1° (95% confidence). Positional accuracy variations versus RF distance from ISO are statistically insignificant (p = 0.05). Our results generally confirm recent internal estimates by the manufacturer (for future release). Conclusions: RF distances up to 77 cm from ISO are clinically acceptable, provided performing a patient safety study with a verification scan.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom