Premium
Poster ‐ 20: Detector selection for commissioning of a Monte Carlo based electron dose calculation algorithm
Author(s) -
Anusionwu Princess,
Alpuche Aviles Jorge E.,
Pistorius Stephen
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4961794
Subject(s) - ionization chamber , detector , monte carlo method , diode , dosimetry , electron , beam (structure) , cathode ray , optics , physics , percentage depth dose curve , ionization , materials science , computational physics , nuclear physics , optoelectronics , nuclear medicine , ion , mathematics , quantum mechanics , medicine , statistics
Objective: Commissioning of a Monte Carlo based electron dose calculation algorithm requires percentage depth doses (PDDs) and beam profiles which can be measured with multiple detectors. Electron dosimetry is commonly performed with cylindrical chambers but parallel plate chambers and diodes can also be used. The purpose of this study was to determine the most appropriate detector to perform the commissioning measurements. Methods: PDDs and beam profiles were measured for beams with energies ranging from 6 MeV to 15 MeV and field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Detectors used included diodes, cylindrical and parallel plate ionization chambers. Beam profiles were measured in water (100 cm source to surface distance) and in air (95 cm source to detector distance). Results: PDDs for the cylindrical chambers were shallower (1.3 mm averaged over all energies and field sizes) than those measured with the parallel plate chambers and diodes. Surface doses measured with the diode and cylindrical chamber were on average larger by 1.6 % and 3% respectively than those of the parallel plate chamber. Profiles measured with a diode resulted in penumbra values smaller than those measured with the cylindrical chamber by 2 mm. Conclusion: The diode was selected as the most appropriate detector since PDDs agreed with those measured with parallel plate chambers (typically recommended for low energies) and results in sharper profiles. Unlike ion chambers, no corrections are needed to measure PDDs, making it more convenient to use.