Premium
Color standard display function: A proposed extension of DICOM GSDF
Author(s) -
Kimpe Tom,
Rostang Johan,
Van Hoey Gert,
Xthona Albert
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4959544
Subject(s) - grayscale , computer vision , artificial intelligence , computer science , quality assurance , dicom , color space , calibration , color management , computer graphics (images) , medical imaging , icc profile , color model , mathematics , medicine , pixel , statistics , image (mathematics) , external quality assessment , pathology
Purpose: Color images are being used more in medical imaging for a broad range of modalities and applications. While in the past, color was mostly used for annotations, today color is also widely being used for diagnostic purposes. Surprisingly enough, there is no agreed upon standard yet that describes how color medical images need to be visualized and how calibration and quality assurance of color medical displays need to be performed. This paper proposes color standard display function (CSDF) which is an extension of the DICOM GSDF standard toward color. CSDF defines how color medical displays need to be calibrated and how QA can be performed to obtain perceptually linear behavior not only for grayscale but also for color. Methods: The proposed CSDF algorithm uses DICOM GSDF calibration as a starting point and subsequently uses a color visual difference metric to redistribute colors in order to obtain perceptual linearity not only for the grayscale behavior but also for the color behavior. A clear calibration and quality assurance algorithm is defined and is validated on a wide range of different display systems. Results: A detailed description of the proposed CSDF calibration and quality assurance algorithms is provided. These algorithms have been tested extensively on three types of display systems: consumer displays, professional displays, and medical grade displays. Test results are reported both for the calibration algorithm as well as for the quantitative and visual quality assurance methods. The tests confirm that the described algorithm generates consistent results and is able to increase perceptual linearity for color and grayscale visualization. Moreover the proposed algorithms are working well on a wide range of display systems. Conclusions: CSDF has been proposed as an extension of the DICOM GSDF standard toward color. Calibration and QA algorithms for CSDF have been described in detail. The proposed algorithms have been tested on several types of display systems and the results confirm that CSDF largely increases the perceptual linearity of visualized colors, while at the same time remaining compliant with DICOM GSDF.