z-logo
Premium
TH‐EF‐204‐05: Application of Small‐Field Treatment: The Promises and Pitfalls of SBRT
Author(s) -
Ford E.
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4958245
Subject(s) - dosimetry , radiosurgery , medical physics , stereotactic radiation therapy , image guided radiation therapy , field size , linear particle accelerator , medicine , nuclear medicine , radiation therapy , radiation treatment planning , instrumentation (computer programming) , quality assurance , computer science , physics , radiology , beam (structure) , optics , external quality assessment , pathology , operating system
Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment delivery systems, such as robotic‐controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG‐51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image‐guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: 1. To learn the physics of small fields in contrast to dosimetry of conventional fields 2. To learn about detectors suitable for small fields 3. To learn about the role of Monte Carlo simulations in determination of small field output factors 4. To provide an overview of the IAEA small field dosimetry recommendations 5. To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. 6. To learn about special technical considerations in delivering IMRT and SBRT treatments 7. To appreciate specific challenges of IMRT implementationJ. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here