Premium
SU‐G‐JeP1‐04: Characterization of a High‐Definition Optical Patient Surface Tracking System Across Five Installations
Author(s) -
Smith T,
Ayan A,
Cochran E,
Woollard J,
Gupta N
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4956979
Subject(s) - imaging phantom , truebeam , tracking (education) , computer science , rotation (mathematics) , displacement (psychology) , linear particle accelerator , computer vision , match moving , medical imaging , motion (physics) , biomedical engineering , artificial intelligence , physics , optics , beam (structure) , medicine , pedagogy , psychotherapist , psychology
Purpose: To assess the performance of Varian's real‐time, Optical Surface Monitoring System (OSMS) by measuring relative regular and irregular surface detection accuracy in 6 degrees of motion (6DoM), across multiple installations. Methods: Varian's Intracranial SRS Package includes OSMS, which utilizes 3 HD camera/projector pods to map a patient surface, track intra‐fraction motion, and gate the treatment beam if motion exceeds a threshold. To evaluate motion‐detection accuracy of OSMS, we recorded shifts of a cube‐shaped phantom on a single Varian TrueBeam linear accelerator as known displacements were performed incrementally across 6DoM. A subset of these measurements was repeated on identical OSMS installations. Phantom motion was driven using the TrueBeam treatment couch, and incremented across ±2cm in steps of 0.1mm, 1mm, and 1cm in the cardinal planes, and across ±40° in steps of 0.1°, 1°, and 5° in the rotational (couch kick) direction. Pitch and Roll were evaluated across ±2.5° in steps of 0.1° and 1°. We then repeated this procedure with a frameless SRS setup with a head phantom in a QFix Encompass mask. Results: Preliminary data show OSMS is capable of detecting regular‐surfaced phantom displacement within 0.03±0.04mm in the cardinal planes, and within 0.01±0.03° rotation across all planes for multiple installations. In a frameless SRS setup, OSMS is accurate to within 0.10±0.07mm and 0.04±0.07° across 6DoM. Additionally, a reproducible “thermal drift” was observed during the first 15min of monitoring each day, and characterized by recording displacement of a stationary phantom each minute for 25min. Drift settled after 15min to an average delta of 0.26±0.03mm and 0.38±0.03mm from the initial capture in the Y and Z directions, respectively. Conclusion: For both regular surfaces and clinical SRS situations, OSMS exceeds quoted detection accuracy. To reduce error, a warm‐up period should be employed to allow camera/projector pod thermal stabilization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom