Premium
SU‐F‐T‐106: A Dosimetric Study of Intensity Modulated Radiation Therapy to Decrease Radiation Dose to the Thoracic Vertebral Bodies in Patients Receiving Concurrent Chemoradiation for Lung Cancer
Author(s) -
DiCostanzo Dominic,
Barney Christian L.,
Bazan Jose G.
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4956242
Subject(s) - medicine , nuclear medicine , radiation therapy , lung cancer , lung , lung volumes , radiology
Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone‐marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed on the TVB structure initially. A subset were re‐planned with BMS‐IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs‐PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS‐IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS‐IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV‐mean dose was not affected by BMS‐IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS‐IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS‐IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.