z-logo
Premium
Method for simulating dose reduction in digital mammography using the Anscombe transformation
Author(s) -
Borges Lucas R.,
Oliveira Helder C. R. de,
Nunes Polyana F.,
Bakic Predrag R.,
Maidment Andrew D. A.,
Vieira Marcelo A. C.
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4948502
Subject(s) - digital mammography , imaging phantom , image noise , dosimetry , noise (video) , mammography , quantum noise , noise reduction , computer science , artificial intelligence , noise power , computer vision , mathematics , nuclear medicine , physics , medicine , power (physics) , image (mathematics) , breast cancer , cancer , quantum mechanics , quantum
Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal‐dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat‐field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower‐radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower‐dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here