z-logo
Premium
Design and evaluation of an MRI‐compatible linear motion stage
Author(s) -
Tavallaei Mohammad Ali,
Johnson Patricia M.,
Liu Junmin,
Drangova Maria
Publication year - 2016
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4937780
Subject(s) - scanner , computer science , stage (stratigraphy) , computer vision , motion estimation , magnetic resonance imaging , homogeneity (statistics) , motion (physics) , linear motion , signal to noise ratio (imaging) , artificial intelligence , optics , physics , radiology , medicine , paleontology , machine learning , biology
Purpose: To develop and evaluate a tool for accurate, reproducible, and programmable motion control of imaging phantoms for use in motion sensitive magnetic resonance imaging (MRI) appli cations. Methods: In this paper, the authors introduce a compact linear motion stage that is made of nonmagnetic material and is actuated with an ultrasonic motor. The stage can be positioned at arbitrary positions and orientations inside the scanner bore to move, push, or pull arbitrary phantoms. Using optical trackers, measuring microscopes, and navigators, the accuracy of the stage in motion control was evaluated. Also, the effect of the stage on image signal‐to‐noise ratio (SNR), artifacts, and B 0 field homogeneity was evaluated. Results: The error of the stage in reaching fixed positions was 0.025 ± 0.021 mm. In execution of dynamic motion profiles, the worst‐case normalized root mean squared error was below 7% (for frequencies below 0.33 Hz). Experiments demonstrated that the stage did not introduce artifacts nor did it degrade the image SNR. The effect of the stage on the B 0 field was less than 2 ppm. Conclusions: The results of the experiments indicate that the proposed system is MRI‐compatible and can create reliable and reproducible motion that may be used for validation and assessment of motion related MRI applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here