z-logo
Premium
WE‐G‐BRA‐01: Patient Safety and Treatment Quality Improvement Through Incident Learning: Experience of a Non‐Academic Proton Therapy Center
Author(s) -
Zheng Y,
Johnson R,
Zhao L,
Ramirez E,
Rana S,
Singh H,
Chacko M
Publication year - 2015
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4926071
Subject(s) - dosimetry , quality assurance , proton therapy , medical physics , documentation , medicine , incident report , patient safety , computer science , nuclear medicine , radiation therapy , health care , surgery , external quality assessment , computer security , pathology , economic growth , economics , programming language
Purpose: Incident learning has been proven to improve patient safety and treatment quality in conventional radiation therapy. However, its application in proton therapy has not been reported yet to our knowledge. In this study, we report our experience in developing and implementation of an in‐house incident learning system. Methods: An incident learning system was developed based on published principles and tailored for our clinical practice and available resource about 18 months ago. The system includes four layers of error detection and report: 1) dosimetry peer review; 2) physicist plan quality assurance (QA); 3) treatment delivery issue on call and record; and 4) other incident report. The first two layers of QA and report were mandatory for each treatment plan through easy‐to‐use spreadsheets that are only accessible by the dosimetry and physicist departments. The treatment delivery issues were recorded case by case by the on call physicist. All other incidents were reported through an online incident report system, which can be anonymous. The incident report includes near misses on planning and delivery, process deviation, machine issues, work flow and documentation. Periodic incident reviews were performed. Results: In total, about 116 errors were reported through dosimetry review, 137 errors through plan QA, 83 treatment issues through physics on call record, and 30 through the online incident report. Only 8 incidents (2.2%) were considered to have a clinical impact to patients, and the rest of errors were either detected before reaching patients or had negligible dosimetric impact (<5% dose variance). Personnel training & process improvements were implemented upon periodic incident review. Conclusion: An incident learning system can be helpful in personnel training, error reduction, and patient safety and treatment quality improvement. The system needs to be catered for each clinic's practice and available resources. Incident and knowledge sharing among proton centers are encouraged.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here