Premium
SU‐E‐T‐51: A National QA Audit of QA Systems Used for IMRT and VMAT Patient QA
Author(s) -
Seravalli E,
Houweling A,
Van Gellekom M,
Kaas J,
Kuik M,
Loeff E,
Raaben T,
De Pooter J,
de Vries W,
Van de Kamer J
Publication year - 2015
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4924412
Subject(s) - imaging phantom , quality assurance , audit , ionization chamber , medical physics , radiation treatment planning , nuclear medicine , medicine , computer science , physics , radiation therapy , radiology , ionization , ion , external quality assessment , management , pathology , quantum mechanics , economics
Purpose: To independently validate patient‐specific quality assurance for IMRT and VMAT plans using the same set of treatment plans for all institutes. Methods: In February 2014 we devised a set of treatment plans: simple IMRT/VMAT plans; more complex IMRT/VMAT plans and a stereotactic VMAT plan, all 6MV for both Varian and Elekta linacs. In total we used 5 Varian and 8 Elekta plans. The plans were imported in the institute's treatment planning system for dose computation on the phantom of the audit team and the institute's phantom. Additionally, 10x10 cm2 fields were made and computed on both phantoms. Next, the audit team performed measurements using the audit equipment. So far, 18 audits have been performed and we expect to have concluded the audits by June 2015. The measurements were performed using an ionization chamber (PinPoint, PTW), Gafchromic film and a 2D ionization chamber array, all in an octagonal phantom (Octavius, PTW, see Figure). Differences between the measured and computed 2D dose distributions were investigated using a gamma analysis with a 5%/1mm criterion for the stereotactic treatment plan and 3%/3mm for the other plans. Additionally, the participating centres performed QA measurements of the same treatment plans according to their local protocol and equipment. Results: For the 10x10 field on the phantom, the first 18 audits showed differences with respect to the planning of −0.21 (range: −1.8; 2.2)%. See Table 1 for more results. The findings compared well with the QA measurement results reported by the institutions according to their local protocols. Conclusion: These preliminary results demonstrate that such a national QA audit is feasible. Importing and computing the prepared treatment plans in the planning systems in use in the country is achievable. The local QA systems provided similar results as found with the audit.