z-logo
Premium
The emergence of nonuniform spatiotemporal fractionation schemes within the standard BED model
Author(s) -
Unkelbach Jan,
Papp Dávid
Publication year - 2015
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4916684
Subject(s) - fractionation , context (archaeology) , computer science , dosimetry , constraint (computer aided design) , mathematical optimization , radiation treatment planning , radiation therapy , nuclear medicine , mathematics , chemistry , geology , radiology , medicine , geometry , chromatography , paleontology
Purpose: Nonuniform spatiotemporal radiotherapy fractionation schemes, i.e., delivering distinct dose distributions in different fractions can potentially improve the therapeutic ratio. This is possible if the dose distributions are designed such that similar doses are delivered to normal tissues (exploit the fractionation effect) while hypofractionating subregions of the tumor. In this paper, the authors develop methodology for treatment planning with nonuniform fractions and demonstrate this concept in the context of intensity‐modulated proton therapy (IMPT). Methods: Treatment planning is performed by simultaneously optimizing (possibly distinct) IMPT dose distributions for multiple fractions. This is achieved using objective and constraint functions evaluated for the cumulative biologically equivalent dose (BED) delivered at the end of treatment. BED based treatment planning formulations lead to nonconvex optimization problems, such that local gradient based algorithms require adequate starting positions to find good local optima. To that end, the authors develop a combinatorial algorithm to initialize the pencil beam intensities. Results: The concept of nonuniform spatiotemporal fractionation schemes is demonstrated for a spinal metastasis patient treated in two fractions using stereotactic body radiation therapy. The patient is treated with posterior oblique beams with the kidneys being located in the entrance region of the beam. It is shown that a nonuniform fractionation scheme that hypofractionates the central part of the tumor allows for a skin and kidney BED reduction of approximately 10%–20%. Conclusions: Nonuniform spatiotemporal fractionation schemes represent a novel approach to exploit fractionation effects that deserves further exploration for selected disease sites.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here