Premium
SU‐F‐BRD‐11: Prediction of Dosimetric Endpoints From Patient Geometry Using Neural Nets
Author(s) -
O' Connell D,
Chow P,
Agazaryan N,
Jani S,
Low D,
Lamb J
Publication year - 2014
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4889065
Subject(s) - standard deviation , artificial neural network , nuclear medicine , dosimetry , radiation therapy , prostate , tomotherapy , mathematics , medicine , computer science , artificial intelligence , statistics , radiology , cancer
Purpose: The previously‐published overlap volume histogram (OVH) technique lends itself naturally to prediction of the dose received by a given volume of tissue (e.g. D90) in intensity‐modulated radiotherapy (IMRT) treatment plans. Here we extend the OVH technique using artificial neural networks in order to predict the volume of tissue receiving a given dose (e.g. V90) in both prostate IMRT and conventional breast radiotherapy. Methods: Twenty‐nine prostate treatment plans and forty‐three breast treatment plans were analyzed. The spatial relationships between the prostate and rectum and between the breast and ipsilateral lung were characterized using OVHs. The OVH is a cumulative histogram representing the fractional volume of the risk organ overlapped by a series of isotropic expansions of the planning target volume (PTV). Seven cases were identified as outliers and replanned. OVH points were used as inputs to a one hidden layer feed forward artificial neural network with quality parameters of the corresponding plan, such as the rectum V50, as targets. A 3‐fold cross‐validation was used to estimate the prediction error. Results: The root mean square (RMS) error between the predicted rectum V50s and the planned values was 2.3, which was 35% of the standard deviation of V50 for the twenty‐nine plans. The RMS error of prediction of V20 of the ipsilateral lung in breast cases was 3.9, which was 90% of the standard deviation of the V20 values in the breast plan database. Conclusion: This study demonstrates that artificial neural nets can be used to extend the OVH technique to predict dosimetric endpoints taking the form of a volume receiving a given dose, rather than the minimum dose received by a given volume. Prediction of ipsilateral lung dose in breast radiotherapy using the OVH technique remains a work in progress.