z-logo
Premium
SU‐E‐J‐23: An Accurate Algorithm to Match Imperfectly Matched Images for Lung Tumor Detection Without Markers
Author(s) -
Rozario T,
Bereg S,
Chiu T,
Liu H,
Kearney V,
Jiang L,
Mao W
Publication year - 2014
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4888074
Subject(s) - projection (relational algebra) , tile , imaging phantom , digital radiography , artificial intelligence , computer science , computer vision , transformation (genetics) , matching (statistics) , radiography , algorithm , nuclear medicine , mathematics , physics , medicine , art , biochemistry , chemistry , nuclear physics , visual arts , gene , statistics
Purpose: In order to locate lung tumors on projection images without internal markers, digitally reconstructed radiograph (DRR) is created and compared with projection images. Since lung tumors always move and their locations change on projection images while they are static on DRRs, a special DRR (background DRR) is generated based on modified anatomy from which lung tumors are removed. In addition, global discrepancies exist between DRRs and projections due to their different image originations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported. Methods: This method divides global images into a matrix of small tiles and similarities will be evaluated by calculating normalized cross correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) will be automatically optimized to keep the tumor within a single tile which has bad matching with the corresponding DRR tile. A pixel based linear transformation will be determined by linear interpolations of tile transformation results obtained during tile matching. The DRR will be transformed to the projection image level and subtracted from it. The resulting subtracted image now contains only the tumor. A DRR of the tumor is registered to the subtracted image to locate the tumor. Results: This method has been successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (Brainlab) for dynamic tumor tracking on phantom studies. Radiation opaque markers are implanted and used as ground truth for tumor positions. Although, other organs and bony structures introduce strong signals superimposed on tumors at some angles, this method accurately locates tumors on every projection over 12 gantry angles. The maximum error is less than 2.6 mm while the total average error is 1.0 mm. Conclusion: This algorithm is capable of detecting tumor without markers despite strong background signals.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here