z-logo
Premium
The use of strain tensor to estimate thoracic tumors deformation
Author(s) -
Michalski Darek,
Huq M. Saiful,
Bednarz Greg,
Heron Dwight E.
Publication year - 2014
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4884222
Subject(s) - infinitesimal strain theory , mathematics , tensor (intrinsic definition) , isotropy , strain rate tensor , euclidean distance , anisotropy , mathematical analysis , eigenvalues and eigenvectors , geometry , physics , cauchy stress tensor , finite element method , optics , quantum mechanics , thermodynamics
Purpose: Respiration‐induced kinematics of thoracic tumors suggests a simple analogy with elasticity, where a strain tensor is used to characterize the volume of interests. The application of the biomechanical framework allows for the objective determination of tumor characteristics. Methods: Four‐dimensional computed tomography provides the snapshots of the patient's anatomy at the end of inspiration and expiration. Image registration was used to obtain the displacement vector fields and deformation fields, which allows one for the determination of the strain tensor. Its departure from the identity matrix gauges the departure of the medium from rigidity. The tensorial characteristic of each GTV voxel was determined and averaged. To this end, the standard Euclidean matrix norm as well as the Log‐Euclidean norm were employed. Tensorial anisotropy was gauged with the fractional anisotropy measure which is based on the normalized variance of the tensors eigenvalues. Anisotropy was also evaluated with the geodesic distance in the Log‐Euclidean framework of a given strain tensor to its closest isotropic counterpart. Results: The averaged strain tensor was determined for each of the 15 retrospectively analyzed thoracic GTVs. The amplitude of GTV motion varied from 0.64 to 4.21 with the average of 1.20 cm. The GTV size ranged from 5.16 to 149.99 cc with the average of 43.19 cc. The tensorial analysis shows that deformation is inconsiderable and that the tensorial anisotropy is small. The Log‐Euclidean distance of averaged strain tensors from the identity matrix ranged from 0.06 to 0.31 with the average of 0.19. The Frobenius distance from the identity matrix is similar and ranged from 0.06 to 0.35 with the average of 0.21. Their fractional anisotropy ranged from 0.02 to 0.12 with the average of 0.07. Their geodesic anisotropy ranged from 0.03 to 0.16 with the average of 0.09. These values also indicate insignificant deformation. Conclusions: The tensorial framework allows for direct measurements of tissue deformation. It goes beyond the evaluation of deformation via comparison of shapes. It is an independent and objective determination of tissue properties. This methodology can be used to determine possible changes in lung properties due to radiation therapy and possible toxicities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here